
Integration of Livestock systems in Natural farming

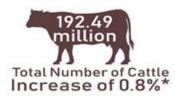
Outline

- Introduction
 - Importance of livestock for Indian economy
- Livestock farming systems
 - Differences between natural and conventional
- Natural farming system
 - Why to integrate livestock with crop production
 - Advantages
- Features of different combinations of integration
- Case studies
- Summary

Contribution of livestock to our national economy

- Livestock sector contributed <u>Rs 11,14,249</u> Crores at current process to the Gross Domestic Product (GDP) in FY 2020-21 which is equivalent to 30.87% of the value of output from Agriculture and allied sectors.
- The contribution of livestock sector to Indian GVA is around 6.17%. Growth rate of 6.13% over the previous year.
- About **16.44 million** workers are employed in livestock farming activities including fisheries and aquaculture.

Livestock Products


- India is the largest producer of milk with 20.17 percent share in the total milk production in the world. 221.06 million tonnes (in 2021-22) (annual growth rate of 5.68%)
- India accounts for 5.65% of global egg production. 129.60
 Billion (in 2021-22) (growth of 6.19%)
- The total meat production in India is around 9.29 million tonnes (in 2021-22) (growth of 5.62%)
- Draught power- one pair of bulloks-0.5HP.
- Animal power is also utilized for transport. 25,000 million tones km of freight per year this saves 6 million tons of diesel/petrol worth Rs.4000 crores.


Livestock resources in India

20th Livestock Census

Total Livestock population is 535.78 million, increase of 4.6%*

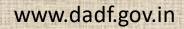
Total Bovine population (Cattle, Buffalo, Mithun and Yak) is 302.79 Million in 2019, an increase of about 1% *

Exotic/Crossbred and Indigenous/Non-descript Cattle population is 50.42 million and 142.11 million respectively

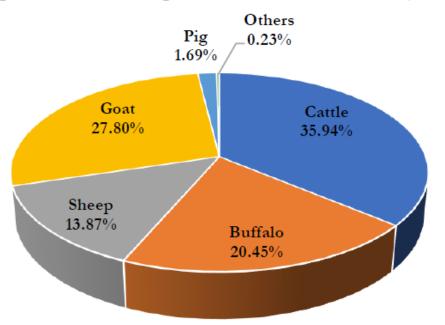
*Over the previous census(2012)

www.dadf.gov.in

Some of the key outcomes of the 20th Livestock

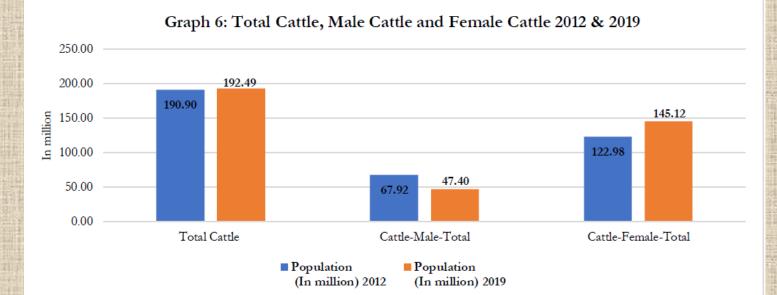

Census

Category	Population (In million) 2012	Population (In million) 2019	% growth
Cattle	190.90	192.49	0.83
Buffalo	108.70	109.85	1.06
Sheep	65.07	74.26	14.13
Goat	135.17	148.88	10.14
Pig	10.29	9.06	-12.03
Total Livestock	512.06	535.78	4.63


www.dadf.gov.in

Poultry

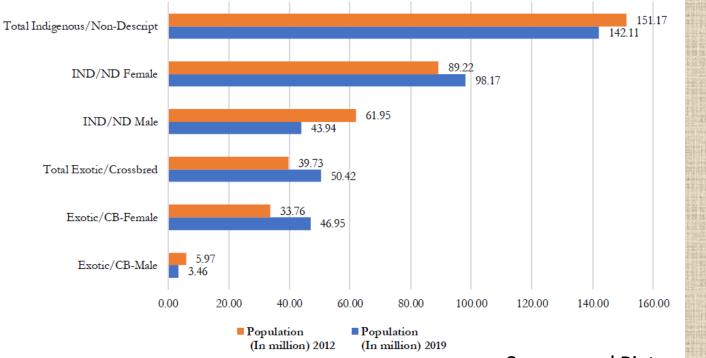
	Population (In million) 2012	Population (In million) 2019	% growth
Total Poultry	729.21	851.81	16.81
Backyard poultry	217.49	317.07	45.78
Commercial Poultry	511.72	534.74	4.50



Graph 1: Livestock Population 2019 - Share of Major Species

www.dadf.gov.in

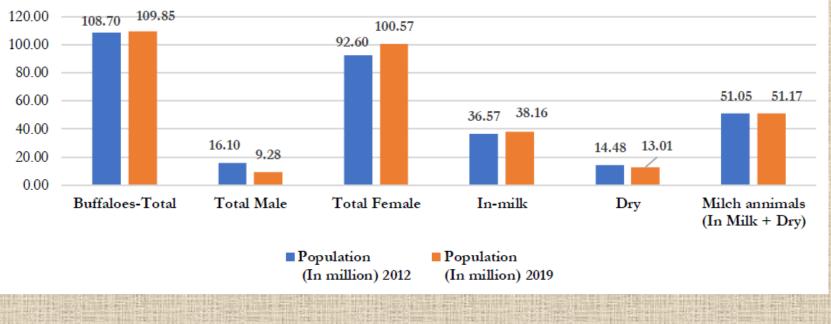
Salient Features of Livestock census 2019



Source and Picture courtesy: www.dadf.gov.

Salient Features of Livestock census

2019


Graph 7: Breed-Group wise Distribution of Catle Population 2012 & 2019

Source and Picture courtesy: www.dadf.gov.

Salient Features of Livestock census 2019

Graph 11: Buffalo Population 2012 and 2019

Source and Picture courtesy: www.dadf.gov.

Sl No	Species	Recognised Number of breeds
1	CATTLE	53
2	BUFFALOE	20 BIODIVERSITY
3	SHEEP	45
4	GOAT	39Total Number of
5	POULTRY	20Breeds in India: 220
6	PIG	14
7	Horses and Ponies	8
8	Camel	9
9	Donkey	3
10	Yak	
11	Duck	3 13-Dog 3
12	Geese	1 14-synthetic cattle 1

Livestock Farming Systems

- Natural Livestock Farming System
- Organic Livestock Farming System
- Commercial Livestock Farming System
- Contract/Integration Livestock Farming System
- Integrated Livestock Farming System

Natural (Traditional) Livestock Farming System

- Traditionally followed livestock farming for ages
- Supplementary to agriculture
- Agricultural byproducts are used as input
- Animals usually are low producing
- Low input-Low output system
- Sustainable model for natural farming with no waste in the system

Organic Livestock Farming System

- Origin of the animals and the inputs for the system are of organic in origin
- Livestock maintained in their natural environment
- Animal welfare is the major priority
- At no point any chemicals or drugs used for treatment or supplement
- Low level of production
- Certified products sold at a premium

AL PROGRAMME FOR

Differences between Organic and Natural farming

はようのあわれ	NATURAL FARMING	ORGANIC FARMING
The second secon	No external fertilisers	Organic fertilisers are allowed
	No ploughing, tilling and weeding No pesticides, No herbicides, No pruning	Basic agro practices like ploughing, tilling, weeding are performed
12 12 12 12 12 12 12 12 12 12 12 12 12 1	Apart from natural manure, natural farming encourages decomposition of organic matter by microbes and earthworms	Manures like compost, vermicompost are used on farmlands
いるというないのないのであり	Less regulated	Guidelines & regulations to be followed for certification purpose
The second to the second secon	Lost cost farming method	Expensive due to requirement of bulk manure

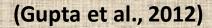
Commercial Livestock Farming System

- Livestock rearing is the primary and agriculture secondary function
- Profit is the motto
- Under Indian Conditions can be further categorized into small, medium and large on the herd/flock size
- Large commercial farms are high input and high output ventures
- Scientific management with some mechanization could be seen
- Technology is generally in use

Differences in natural and commercial production systems

	Natural Livestock Production	Commercial Livestock Production
01	More emphasis on livestock welfare and environment	More emphasis on livestock products
02	Less number of animals in more space	More number of animals in less place (Focus on intensification)
03	Less impact on environment	Environmental consideration is not an issue
04	Natural behaviour of animals is preserved	No such consideration
05	Recycling of wastes	No such consideration
06	Subsistence? Profits -minimal	Higher profitability is the main aim

Contract (Integration) Livestock Farming


 "A contract farming arrangement involves a wage contract between an integrator who supplies the intermediate inputs and procures the output (as per pre decided terms) and a poultry farmer who provides inputs such as administration, rearing and care taking."

(Adopted from: Poultry Sector – A Discussion, (Dr. Raji Ajwani-Ramchandani, 2012)

Integrated Livestock Farming System

- Several species of animals are reared simultaneously for different purposes
- Revenue generated from multiple sources
- Sustainable model for Indian conditions

 "An integrated farming system consists of a range of resource-saving practices that aim to achieve acceptable profits and high and sustained production levels, while minimizing the negative effects of intensive farming and preserving the environment"

Why to integrate livestock with crop?

- Land holdings-fragmented
- Seasonal income
- Risk of crop failure
- Mono cropping
- Resource deterioration

Benefits from integration of livestock

- Can make the system sustainable
- Ensure the revitalisation of the land resource
- Employment throughout the year for the family
- Recycling of waste with in the production system
- Balanced food for the family
- Effective utilization of the available resources eg., land
- Increased income leading to higher standard of living

Nutrient flow in integrated Crop-livestock farming system

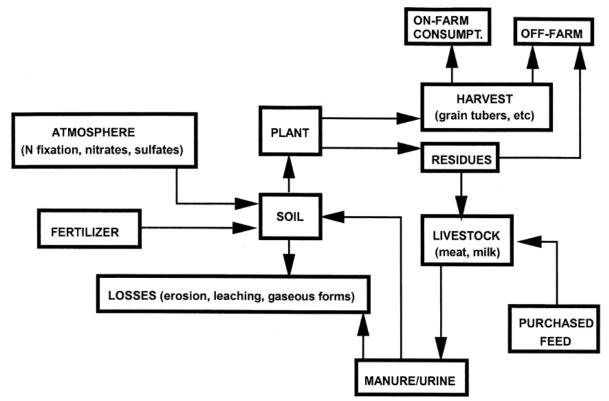


Fig. 3. Pathways of nutrient flow in mixed crop-livestock farming systems (Stangel, 1995).

Nutrient flow in integrated Crop-livestock farming system

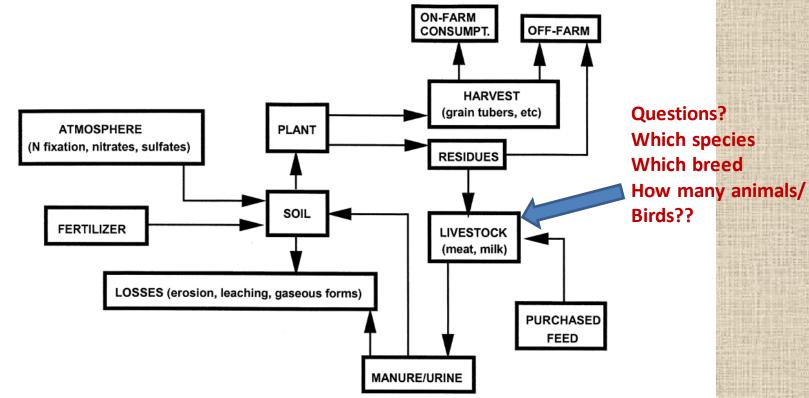


Fig. 3. Pathways of nutrient flow in mixed crop-livestock farming systems (Stangel, 1995).

Factors to be considered for introduction of Livestock

- Resource availability-land, labour, capital
- Soil and climate
- Resource utilization at present
- Skills about the management of the livestock to be introduced
- Marketing capabilities
- Economics of the integrated farm

Example1. General farming-system characteristics*

Types of farming systems	Crop without livestock (CWL)	Crop with dairy (CD)	Landless with livestock (LWL)	Crop with small ruminants (CSR)	Crop with diverse livestock (CWDL)
	n = 1326	n = 1063	n = 188	n = 165	n = 23
Ownership of land	Y	Υ	Х	Y	Y
Ownership of livestock	Х	Y	Y	Y	Y

Distribution per farm type

Marginal (> 1 ha)	40%	15%		20%	21%
Small (1–2 ha)	37%	31%		32%	26%
Medium (2–4 ha)	21%	42%		32%	48%
Large (>4 ha)	2%	12%		30%	4%
		(Kuchiman	chi et al., 2022	*Info from Tela	ngana state

General farming-system characteristics

Types of farming systems	Crop without livestock (CWL)	Crop with dairy (CD)	Landless with livestock (LWL)	Crop with small ruminants (CSR)	Crop with diverse livestock (CWDL)
Cropping characteristics	Rain-fed, Limited irrigation, Monocropping	Irrigated, Mixed cropping, Continuous irrigation		Rain-fed; Limited irrigation, Monocropping	Rain-fed, Mixed cropping
Crops	Predominantly cash crops	Cash & food crops with residues, Green fodder		Predominantly Cash crops	
Livestock characteristics (dominant species)	Native poultry	Large ruminants crossbred/ exotic cattle/buffalo	Native poultry and small ruminants	Small ruminants	Diverse livestock species

General farming-system characteristics

Types of farming systems	Crop without livestock (CWL)	Crop with dairy (CD)	Landless with livestock (LWL)	Crop with small ruminants (CSR)	Crop with diverse livestock (CWDL)
Crop - livestock practices	Intensive specialized technologies	Intensive specialized technologies	Traditional, Subsistence Depend on CPRs for Grazing	Intensive specialized technologies Depend on CPRs for grazing	Traditional, subsistence, Depend on CPRs for grazing
Farm infrastructure	Traditional/basi c	Use Farm machinery	Traditional/b asic	Use Farm machinery	Traditional/bas ic

CPR-common property resources

(Kuchimanchi et al., 2022)

The relationship between herd size and gross margins

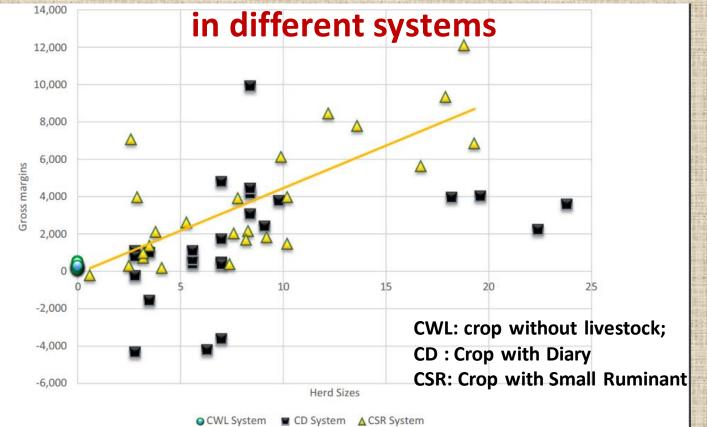


Fig. 2. The relationship between herd size (in TLUs) and gross margins (in USD) for the three farming systems under study. Only the regression line for the CSR system is plotted because it was the only farming system in which herd size resulted in a significant factor for gross margin. Note: crop without livestock (CWL), crop with dairy (CD), and crop with small ruminant (CSR) farming systems. Source: Economic performance study of three farming systems (2016–2017, n = 75).

(Kuchimanchi et al., 2022)

In terms of economic performance Crop Without Livestock (CWL) system

- a medium-input/low-output system, consistently exhibited low economic performance,
- with low revenues attributable primarily to higher production costs for cash crops and market volatility
- Crop with Diary (CD) system
 - A high-input/high output system, was less profitable, due to high production costs.
 - This system exhibited high variability in Gross Margins from moderate to substantially negative records across House holds,
 - the consistent income obtained from dairy farming came at the expense of crop production in the winter season, as scarce water resources were diverted for dairying. This strategy resulted in the loss of additional income

In terms of economic performance

- Crop Small Ruminant (CSR) system
 - is a medium-input/medium-output system
 - showed the best performance, as explained by the low water requirements and low feed production costs (e.g., leasing croplands and use of existing CPRs).
 - The profitability of this system was further enhanced by growing market demand and the current market price for small ruminant meat.
 - The system also adapted to the dynamic context by adjusting herd sizes to the decreasing availability of common property resources,
 - suited to the dryland context
 - which cultivated crops for two seasons each year, in addition to rearing small ruminants
 (Kuchimanchi et al., 2022)

Example2. Dairy based Integrated farming system

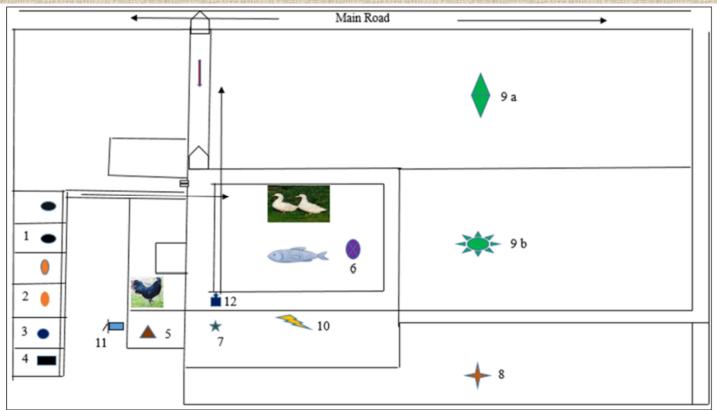


 Fig 1: Design of dairy based IFS model under 1 ha. area. (1. Buffalo shed, 2. Cattle shed, 3. Goat shed, 4. Poultry and Duck shed, 5.

 Vermicompost unit, 6. Fish Pond, 7. Nursery, 8. Crop component, 9. Forage production (a-perennial forage with intercrops and b-annual forage),

 10. Fruit plants, 11. Chaff cutter machine and 12. Electric motor for water)

 (Regar et al., 2022)

Table 1: The area distribution of dairy based IFS of each enterprise at NDRI

Area	Components	Proposed interventions	
		Sahiwal cattle - 3	
Livestock 5ACU		Buffaloes -3	
LIVESIOCK JACO	Crossbred (AxB) goats - 10		
	Poultry -20		
		Berseem (BL-42) + Japanese Sarsoo	
	Annual and perennial forage crops	HN+ Berseem + Japanese Sarsoo	
		Moringa	
0.4ha	Caraal arons	Wheat (HD 3086)	
0.411a	Cereal crops	Rice (Pusa Basmati 1121)	
0.1 ha	Fruit tree on pond dyke	Papaya (Taiwan red lady-786)	
0.1 ha	Misc. Compost/Vermin-compost, Fishery (25 x 15 x 3)		

(Regar et al., 2022)

Nutrient recycling in dairy based integrated farming system model

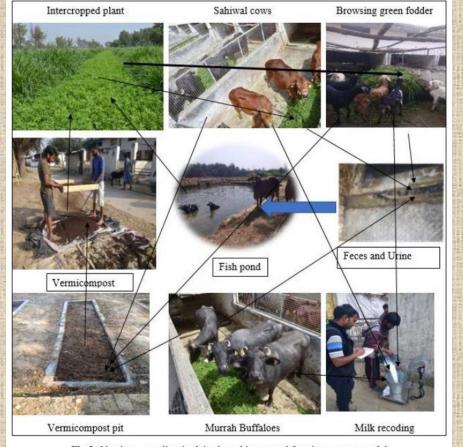
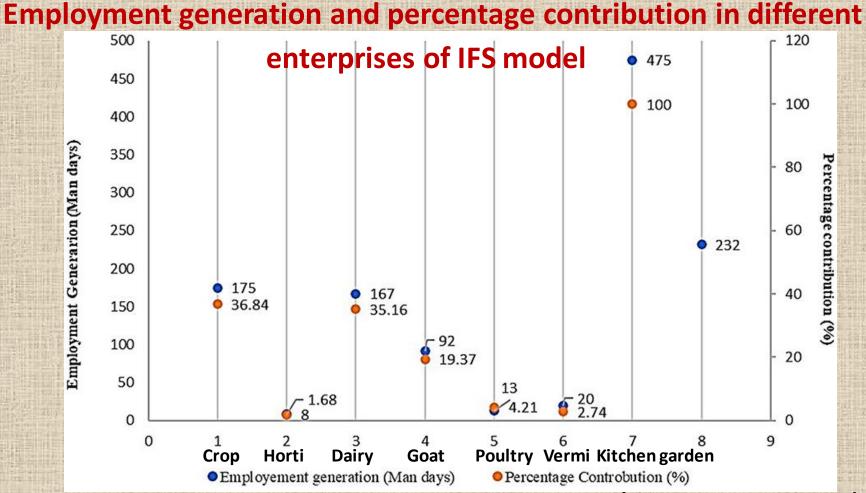


Fig 2: Nutrient recycling in dairy based integrated farming system model

(Regar et al., 2022)


Table 4: Cost and returns (Rs.) of different enterprise as a whole system of dairy based IFS

Details	Gross cost	Gross return	Net return	B:C ratio	
Dairy	6,33,480	8,71,705	2,38,225	1.38	
Goat	1,64,840	2,78,580	1,13,740	1.69	
Poultry	12,650	27,565	14,915	2.18	
Ducks	4,400	5,320	920	1.21	
Fish	13,920	30,960	17,040	2.22	
Papaya	300	1,000	700	3.33	
Vermi-compost	5,350	15,000	9,650	2.80	
Wheat	23,400	57,200	33,800	2.44	
Rice	19,500	30,400	10,900	1.55	
Berseem + Mustard	25,200	72,000	46,800	2.86	
HN	59,000	1,26,300	67,300	2.24	
Maize + cowpea (2:1)	15850	49500	33650	2.12	
IFS as a whole	9,77,890	1,56,5530	5,87,640	1.60	
Return/year			3,91,760		
Return from - Dairy: 59.89%, Crops: 32.75%, Subsidiary enterprises:					
7.36% (P					

(Regar et al., 2022)

Example 3. Integrated farming system at TNAU

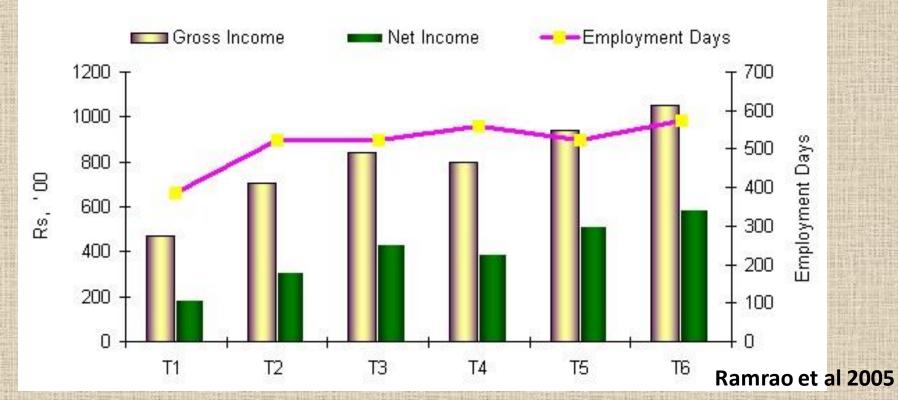
Components	Area (m ²)	Details				
Crop	8,500		Kharif	Rabi	Summer	Area (m ²)
		CS I	Cowpea (VBN 3)	Ragi (CO 15)	Dhaincha	1,500
		CS II	Maize (COH(M) 6)	Sunflower (SF hybrid CO 2)	Dhaincha	1,500
		CS III	Prosomillet CO (PV) 5	Chillies (Samba)	Dhaincha	1,500
		CS IV	Pearl millet CO (Cu) 10	Cotton (TCH1819)	Dhaincha	1,500
		Fodder unit	der unit Bajra Napier grass (CO BN 5) and <i>Desmanthus</i> (CO 1)			1,500
			Grazing unit:	Cenchrusciliaris (CO 2) a	and fodder trees	1,000
Horticulture	1,000	Fruit trees: Sapota PKM 2 and PKM 1 (3:1), Guava (Lucknow 49), Amla NA7 and BSR1 (4:1), Pomegranate (Bhaguva)				
Dairy (2 + 2)	50	Native breeds (Gir and Kankrej)				
Goat rearing $(12 + 1)$	50	Native breed (Salem black)				
Poultry (150 birds)	50	Desi poultry birds (Aseel) for meat purposes (50 per batch; 3 batches per year)				
Vermicompost	50					
Kitchen garden	200	Vegetables and greens				
Border planting		Annual moringa (PKM 1), curry leaf (Senkambu), agathi, Gliricidia sepium				
Areas for supporting activities	100	Manure pit, fodder chopping unit, bakery unit, <i>etc.</i>				
Total	10,000	(Shanmugam et al 2024				

(Shanmugam et al 2024)

Economics of production in IFS model

Components		Total cost/	Gross return/	Net return/	B:C	Net return contribution (%)		oution (%)
Cropping		103,337	209,435	106,098	2.03	33.39		
Horticulture		7,309	22,815	15,506	3.12	4.88		
Dairy		125,261	155,501	30,240	1.24		9.52	
Goat		49,208	122,687	73,479	2.49		23.12	F3 0%
Poultry		26,600	49,598	22,998	1.86		7.24	52.0%
Vermicompost		49,964	89,880	39,916	1.80		12.56	
Kitchen garden		5,196 14,801 9,605 2.85		3.02				
Boundary plant	ing	5,133	25,056	19,923	4.88		6.27	
Total		372,008	689,773	317,765			100	
Conventional (crop + horticulture + livestock)		164,231	266,236	102,005	1.62			
Fold change (tir	nes)	+2.27	+2.59	+3.12				

(Shanmugam et al 2024)


B:C, Benefit-cost ratio.

Example 4. The modules formed for marginal farmers having 3.5 acre land holding

T1 Crop (3.5 Acre)
T2 Crop + 2 Bullocks + 3 Cows
T3 Crop + 2 Bullocks + 3 Buffaloes
T4 Crop + 2 Bullocks + 1 Cow + 2 Buffaloes
T5 Crop+2 Bullocks + 1 Cow + 2 Buffaloes + 15 Goats
T6 Crop + 2 Bullocks + 1 Cow + 2 Buffaloes + 15 Goats + 20 Poultry + 20 Ducks

Ramrao et al 2005

Income and expenditure in different mixed farming models for Small Holders

 T_1 (Crop), T_2 (Crop + 2 Bullocks + 3 Cows), T_3 (Crop + 2 Bullocks + 3 Buffaloes), T_4 (Crop + 2 Bullocks + 1Cow + 2 Buffaloes), T_5 (Crop + 2 Bullocks + 1Cow + 2 Buffaloes + 15 Goats), T_6 (Crop + 2 Bullocks + 1Cow + 2 Buffaloes + 15 Goats + 20 Poultry + 20 Ducks).

Integration of poultry with fish production

•In poultry-fish farming **500 birds** is enough to fertilize **one hectare pond** area.

• The yield of about **3.9t/ha/yr** has been obtained in composite culture system stocked @8000 fish/ha. Fish used in practice : •Silver carp- big head – herbivores – higher level of water (surface). •Grass carp –carnivore- stay in middle. Common carp-omnivore – stay in bottom.

Cattle-Fish Culture


- The manuring of fish pond by using cow dung is one of the common practices all-over the world.
- A healthy cow excretes over 4,000-5,000 kg dung, 3,500-4,000 lt urine on an annual basis.
- Manuring with cow dung, which is rich in nutrients results in increase of natural food organism and bacteria in fishpond.
- A unit of 5-6 cows can provide adequate manure for 1 ha of pond.
- In addition to 9,000 kg of milk, about 3,000-4,000 kg fish/ha/year can also be harvested with such integration.

Integration of goat farming with backyard poultry

Integrated Biogas Generation

- Renewable source of energy
- Biological decomposition
- Cheaper & better fuel
- Optimize the use of chemical fertilizer
- Solids are recovered Tanks
- Effluent protein rich feed for animals
- Used as a fuel and non fuel

Biogas production

- Apart from manurial value biogas can be produced from livestock dung and poultry droppings.
- 32 kg of cow dung/20 kgs of pig faeces/12 kgs of poultry droppings can produce 1 m³ – 34 cft of bio gas. the calorific value of bio gas –500 to 700 BTU per cft in comparison to Natural gas – 850 BTU/cft.
- BTU is British Thermal Unit. It's a traditional unit of heat. It is the amount of temperature required to raise 1 pound of water by 1 degree Fahrenheit.

- 1 m³ of slurry fed to biogas plant produces on an average 0.15 to 0.20 m³ of biogas daily.
- Based on equivalent effective heat produced 2 m³ biogas plant replaces in a month fuel equivalent of 26 kgs of LPG contained in standard gas cylinder or 37 litres of kerosene or 88 kgs of charcoal or 210 kgs of fuel wood or 740 kgs of animal dung.

Enriched organic manure for agriculture Improving soil fertility and increase crop yield Supplying additional NPK

Available macronutrient Present in the commonly available manures

Sl.no	Manure	N%	P%	K%	
1	Fresh cattle dung	0.3-0.4	0.1-0.2	0.1-0.3	
2	FYM	0.4-1.5	0.3-0.9	0.3-1.9	
3	Compost	0.5-1.5	0.3-0.9	0.8-1.2	
4	Poultry manure	1.0-1.8	1.4-1.8	0.8-0.9	
5	Cattle urine	0.9-1.2	Trace	0.5-1.0	
6	Paddy straw	0.3-0.4	0.8-1.0	0.7-0.9	
7	Wheat straw	0.5-0.6	0.1-0.2	1.1-1.3	

Nutrient content of animal and poultry manure (mg g dry weight⁻¹)

	Cattle	Sheep	Pig	Horse	Poultry
Nitrogen	25-40	20-45	20-45	17-30	28-62
Phosphorus	4-10	4-11	6-12	3-7	9-29
Potassium	7-25	20-29	15-48	15-18	8-29
Calcium	5-8	8-19	3-20	7-29	17-69
Magnesium	5-8	3-6	2-3	3-5	3-8
Sulphur	3-4	2-3	3-5	1-3	4-7

Summary

- Integration of livestock to crop systems increases profitability, provides more labour, better resource utilization
- Choosing the right combination of different species or the birds depending on the farm resources is the key to successful integration

QUESTIONS?